Dual Function Solid State Battery with Self-forming Self-healing Electrolyte and Separator

ENERGY

Energy Efficiency &
Renewable Energy

PI/Co-PI: Esther S. Takeuchi / Kenneth J. Takeuchi / Amy C. Marschilok (Stony Brook University, SBU)

• *Objective:* Demonstrate a solid state rechargeable battery with *in situ* generation of a lithium metal anode and iodine cathode

Impact:

- Opportunity to meet or exceed the target of 250 Wh/kg with a high energy density battery with a self-forming, self-healing solid state electrolyte / separator
- Gain technical insight regarding control of electrodeelectrolyte interfacial properties and improved conductivity solid electrolyte with self-healing nature

Development of solid electrolyte & demonstration of feasibility: In situ formation of Li/I_2 cell

ACI of solid electrolytes successfully met conductivity goal ≥10⁻³ S/cm

A) Cells successfully charged, *in situ* formation of anode, cathode. Interface plays critical role. B) initial step-wise charging. C) stable OCV.

Accomplishments:

- Developed methodology of AC impedance measurement as a function of temperature
- Identified solid electrolytes with conductivity ≥10⁻³ S/cm
 Modified the electrolyte/substrate interface to reduce the total measured resistance, a key feature in cell design
- Demonstrated feasibility of successful in situ formation of solid electrolyte cells
- Demonstrated step-wise charging with increasing current levels that decreases total charge time
- Demonstrated OCV stability for cells after charge showing successful in situ formation of an active Li/I₂ cell

FY 17 Milestones:

- Materials procured, prepared and characterized.
- Methodology for AC impedance measurement as a function of temperature demonstrated
- Four most promising solid electrolytes for further study identified
- All milestones met on time

FY17 Deliverables:

• At least one electrolyte with conductivity ≥10⁻³ S/cm

Funding:

— FY17: \$400,000